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Abstract
We study the existence and stability of periodic travelling-wave solutions for
generalized Benjamin–Bona–Mahony and Camassa–Holm equations. To prove
orbital stability, we use the abstract results of Grillakis–Shatah–Strauss and the
Floquet theory for periodic eigenvalue problems.
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1. Introduction

Consider the following equation:

ut + (a(u))x − uxxt =
(

b′(u)
u2

x

2
+ b(u)uxx

)
x

, (1.1)

where a, b : R → R are smooth functions and a(0) = 0. In this paper, we study the problems
of the existence and stability of periodic travelling-wave solutions u = ϕ(x − vt) for (1.1).
It is easy to see that whatever a, b is, the equation for ϕ has no dissipative terms. Hence,
any travelling-wave solution of (1.1) is determined from Newton’s equation which we will
write below in the form ϕ′2 = U(ϕ). Therefore, by using the well-known properties of the
phase portrait of Newton’s equation in the (ϕ, ϕ′) plane, one can establish that under fairly
broad conditions, (1.1) has at least one three-parameter family of periodic solutions ϕ(y) =
ϕ(v, c1;ϕ0; y), where c1 is a constant of integration and ϕ0 = min ϕ (see proposition 1).
The parameters v, c1 determine the phase portrait, while ϕ0 serves to fix the periodic orbit
within. Moreover, if T = T (v, c1, ϕ0) is the minimal (sometimes called fundamental) period
of ϕ, then ϕ has exactly one local minimum and one local maximum in [0, T ). Therefore, ϕ′

has just two zeros in each semi-open interval of length T. By the Floquet theory, this means that
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ϕ′ is either the second or the third eigenfunction of the periodic eigenvalue problem obtained
from the second variation along ϕ of an appropriate conservative functional M(u). If the first
case occurs, then one can use the abstract result of Grillakis–Shatah–Strauss [29] to prove
orbital stability whenever d̈(v) = (d2/dv2)M(ϕ) is positive.

In the periodic case we deal with, it is not always so easy to determine the sign of d̈(v). To
overcome this problem, we first establish a general result (see proposition 6) expressing d̈(v)

through some special line integrals along the energy level orbit {H = h} of the Newtonian
function H(X, Y ) = Y 2 − U(X) which corresponds to ϕ. When a, b are polynomials, these
are complete Abelian integrals and one can apply methods from algebraic geometry (Picard–
Fuchs equations, etc) to determine the possible values of v, c1 and ϕ0 where d̈(v) changes sign.
Let us mention that even for v and c1 fixed, the sign of d̈(v) might depend on the amplitude of
ϕ (ruled by ϕ0) as shown in proposition 8. In this connection, we calculate explicitly the main
term of d̈(v) in the case of arbitrary small-amplitude periodic solutions ϕ of (1.1), see formula
(7.7). It is shown that the main term depends on the first two isochronous constants related to
the centre (X0, 0) into which the orbit (ϕ, ϕ′) shrinks when ε = max ϕ − min ϕ → 0, and on
X0 itself as well.

We apply our results to prove orbital stability for several particular examples.

Theorem I (the modified BBM equation). Let a(u) = 2ωu + βu3, b(u) = 0, β > 0 and
u = ϕ(x − vt) where v > 0, ϕ(y) = ϕ(v, 0;ϕ0; y) be a periodic travelling-wave solution of
(1.1) which does not oscillate around zero. Then ϕ is orbitally stable in any of the cases:

(i) 3v2 − 8ω2 � 0;
(ii) 3v2 − 8ω2 < 0, 2v2 − 2ωv − ω2 > 0 and the period of ϕ is sufficiently large.

Theorem II (the perturbed single-power BBM equation). Let a(u) = βu2, b(u) = γβu, β >

0, and let u = ϕ(x − vt) where v > 0, ϕ(y) = ϕ(v, 0;ϕ0; y) be a periodic travelling-wave
solution of (1.1). Then ϕ is orbitally stable for small |γ |.

Theorem III (the perturbed single-power mBBM equation). Let a(u) = βu3, b(u) =
γβu2, β > 0, and let u = ϕ(x − vt) where v > 0, ϕ(y) = ϕ(v, 0;ϕ0; y) be a periodic
travelling-wave solution of (1.1) which does not oscillate around zero. Then ϕ is orbitally
stable for small |γ |.

Theorem IV (small-amplitude waves of the perturbed BBM equation). Let a(u) =
2ωu + 3

2u2, b(u) = γg(u) and u = ϕ(x − vt) where v > 0, ϕ(y) = ϕ(v, c1;ϕ0; y) be a
periodic travelling-wave solution of (1.1) having a small amplitude. Then ϕ is orbitally stable
for small |γ | and (ω/v, c1/v

2) taken in appropriate domain � ⊂ R
2.

Theorem V (small-amplitude waves of the perturbed mBBM equation). Let a(u) =
2ωu+βu3, b(u) = γg(u), β > 0 and u = ϕ(x −vt) where v > 0, ϕ(y) = ϕ(v, 0;ϕ0; y) be a
periodic travelling-wave solution of (1.1) which has a small amplitude and does not oscillate
around zero. Then ϕ is orbitally stable for 3v2 − 8ω2 > 0 and small |γ |.

We point out that, unlike the other cases, in theorem IV the constant of integration c1 is
not fixed, therefore we consider the whole family of small-amplitude waves. The explicit
expression of � is given in the proof. In theorems IV and V, g(u) is a certain (fixed) function.

Let us mention that for a(u) = 2ku + 3
2u2 and b(u) = u, equation (1.1) becomes the

well-known Camassa–Holm equation

ut + 2kux + 3uux − uxxt = 2uxuxx + uuxxx. (1.2)

2
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Equation (1.2) was derived as a bi-Hamiltonian generalization of the Korteweg–de Vries
equation [27] and later Camassa and Holm [11] recovered it as a water-wave model. The
Camassa–Holm equation is locally well-posed in Hs for s > 3

2 . Moreover, while some
solutions of equation (1.2) are global, others blow up in finite time (in both the periodic
and non-periodic cases) [12, 13, 16, 17, 18, 43, 49]. The solitary waves of Camassa–Holm
equation are smooth in the case k > 0 and peaked for k = 0. Their stability is considered in
[20–22, 30, 31, 41, 42].

For a(u) = 2ku + 3
2u2 and b(u) = γ u, equation (1.1) serves as a model equation for

mechanical vibrations in a compressible elastic rod [25, 26]. Some problems such as well-
posedness and blowing-up in this case were studied in [48, 49, 51], and stability of solitary
waves was investigated in [23, 38].

If b(u) = 0 in (1.1), one obtains the generalized Benjamin–Bona–Mahony (gBBM)
equation for surface waves in a channel [8]. All solutions are global and their solitary waves
are stable or unstable depending on a(u) [34, 46].

For equation (1.1), the well-posedness and stability of solitary waves in the case
a(u) = 2ku + p+2

2 up+1 and b(u) = up are studied in [30]. For k = 0, equation (1.1)
admits peaked solitary wave solutions, which are stable (see [31]).

All these equations appear as models in the shallow-water approximation. A solitary wave
is a localized steady two-dimensional gravity wave of elevation propagating on water surface.
Some substantial developments in the analytical theory of water waves were discussed in the
review paper by Toland [47], see also the recent papers [15, 19] describing the nature of the
particle trajectories in the fluid as the solitary wave propagates on the free water surface.

The existence and stability of periodic travelling waves for nonlinear evolution equations
has received a little attention. In [45] and [42], by using the integrability of the KdV and
CH equations, respectively, the stability of smooth periodic solutions to these equations was
proved. In [37] is shown that for b(u) = u, the only integrable case is the CH equation.
Therefore, one cannot use the approach proposed by McKean [45] to handle the much more
general case we deal with.

Recently, Angulo, Bona and Scialom [4] developed a complete theory of the stability of
cnoidal waves for the KdV equation. The solution u(x, t) = ϕc(x − ct) of KdV satisfies the
equation

ϕ′′
c + 1

2ϕ2
c − cϕc = Aϕc

,

where Aϕc
is an integration constant. An explicit form for ϕc in the periodic case is

ϕc(ξ) = β2 + (β3 − β2)cn
2

(√
β3 − β1

12
ξ ; k

)
,

where cn is the Jacobi elliptic function and the following relations take place:

β1 < β2 < β3, k2 = β3 − β2

β3 − β1
, β1 + β2 + β3 = 3c, Aϕc

= − 1
6�i<jβiβj .

Since cn(u + 2K) = −cn(u) where K = K(k) = ∫ 1
0

dt√
(1−t2)(1−k2t2)

is the complete elliptic

integral of the first kind, then ϕc has the fundamental (i.e. minimal) period Tϕc
given by

Tϕc
= 4

√
3√

β3 − β1
K(k).

Moreover, Tϕc
depends on the speed c and satisfies the inequality

T 2
ϕc

>
(2π)2√
c2 + 2Aϕc

.

3
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Using the abstract results of Grillakis, Shatah and Strauss (adapted to the periodic context),
the authors proved in [4] that the cnoidal waves having a zero mean-value are orbitally stable.

Other new explicit formulae for the periodic travelling waves based on the Jacobi elliptic
function of type dnoidal, together with their stability, have been obtained by Angulo [2, 3]
for the nonlinear Schrödinger (NLS) equation iut + uxx + |u|2u = 0, modified KdV equation
ut + 3u2ux + uxxx = 0 and Hirota–Satsuma system{

ut − a(uxxx + 6uux) = 2bvvx

vt + vxxx + 3uvx = 0.

For NLS the solutions are of the form u(x, t) = eiwtϕw(x), where ϕw(x) is a periodic smooth
function with period L > 0. The solution ϕw is of the form

ϕw(x) = η1dn

(
η1√
c
x; k

)
,

where η1 and the modulus k depend smoothly on w. The orbit �ϕw
,

�ϕw
= {eiθϕw(· + y), (y, θ) ∈ R × [0, 2π)},

generated by the dnoidal wave ϕw is stable by perturbation of periodic function with period
L and nonlinearly unstable by perturbation of periodic function with period 2L. In all these
works, it was necessary to use an elaborated spectral theory for the periodic eigenvalue
problem, ⎧⎨⎩

d2

dx2
� + [ρ − n(n + 1)k2sn2(x; k)]� = 0,

�(0) = �(2K(k)), � ′(0) = � ′(2K(k)),

(1.3)

with specific values of n ∈ N. We will also make use of systems similar to (1.3).
The present paper is organized as follows. In section 2, we formulate and sketch the

proof of a local well-posedness result for equation (1.1) in periodic Hs spaces. In section 3,
we prove the existence of periodic travelling waves of a given (admissible) period and study
their properties. In section 4, we prove the orbital stability result under some hypotheses
(see assumption 1). In section 5, several particular examples are considered. For most
of them, we determine ϕ explicitly and show that ϕ′ is the second eigenfunction of the
respective periodic eigenvalue problem. We also determine the sign of d̈(v) to outline the
cases satisfying assumption 1. In section 6, perturbation theory is applied to prove the orbital
stability of periodic travelling waves for generalized Benjamin–Bona–Mahony and generalized
Camassa–Holm equations (the case of small b in the right-hand side of (1.1)). In section 7, we
study the small-amplitude periodic travelling waves of (1.1) and determine the sign of d̈(v)

for them.

2. Local well-posedness

In this section, we discuss the local well-posedness of the Cauchy problem for equation (1.1).
We begin by introducing some notation and by recalling related definitions we shall use
throughout the paper.

Let P = C∞
per denote the collection of all functions which are C∞ and periodic with a

period T > 0. The topological dual of P will be denoted by P ′. If � ∈ P ′ then we denote by
�(f ) = 〈�, f 〉 the value of � at f . Define the functions �k(x) = exp(2π ikx/T ), k ∈ Z.
The Fourier transform of � ∈ P ′ is the function �̂ : Z → C defined by �̂(k) = 1

T
〈�,�−k〉.

If � is a periodic function with a period T, we have

�̂(k) = 1

T

∫ T

0
�(x) exp(−2π ikx/T ) dx.

4
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For s ∈ R, the Sobolev space Hs([0, T ]) is the set of all f ∈ P ′ such that

‖f ‖2
s = T

∞∑
k=−∞

(1 + |k|2)s |f̂ (k)|2 < ∞.

Certainly, Hs([0, T ]) is a Hilbert space with respect to the inner product

(f, g)s = T

∞∑
k=−∞

(1 + |k|2)s f̂ (k)̂g(k).

Since Hs([0, T ]) ⊂ L2([0, T ]) for every s � 0, we obtain via Plancherel identity that for
every n ∈ N

‖f ‖2
n =

n∑
j=0

‖f (j)‖2,

where f (j) represents the j th derivative of f taken in the sense of P ′. Moreover, Sobolev’s
lemma states that if s > l + 1

2 , then Hs([0, T ]) ↪→ Cl
per where

Cl
per = {f ∈ Cl : f (j) is periodic with a period T for j = 0, . . . , l}.

One can prove the following result about equation (1.1).

Theorem 1. Assume that a, b ∈ Cm+3(R),m � 2. Given u0 ∈ Hs, 3
2 < s < m, there exists a

maximal t0 > 0 and a unique solution u(x, t) to (1.1) such that

u ∈ C([0, t0),H
s) ∩ C1([0, t0),H

s−1).

Moreover, the solution depends continuously on the initial data.

Proof. Take u ∈ Hs and let

A(u) = b(u)∂x, f (u) = (1 − ∂2
x

)−1[
b(u)ux − ∂x

(
1
2b′(u)u2

x + a(u)
)]

.

Using the above notations, one can rewrite equation (1.1) in the following form:

ut + A(u)u = f (u).

In a similar way as in theorem 2.2 in [31] (dealing with the non-periodic case), we have

(1) A(u) is quasi-m-accretive, uniformly on the bounded sets in Hs−1. Moreover, A(u) ∈
L(Hs,H s−1) (where L(X, Y ) is the space of all linear bounded operators from X to
Y,L(X) = L(X,X)) and

‖(A(u1) − A(u2))u3‖s−1 � µ1‖u1 − u2‖s−1‖u3‖s .

(2) Define � = (1 − ∂2
x

)1/2
, B(u) = [�, b(u)∂x]�−1 for u ∈ Hs , where [�, M] denotes the

commutator of � and M. Then B(u) ∈ L(Hs−1) and

‖(B(u1) − B(u2))u3‖s−1 � µ2‖u1 − u2‖s‖u3‖s−1, u1, u2 ∈ Hs, u3 ∈ Hs−1.

(3) f (u) is bounded on the bounded sets in Hs and satisfies

‖f (u1) − f (u2)‖s � µ3‖u1 − u2‖s , u1, u2 ∈ Hs,

‖f (u1) − f (u2)‖s−1 � µ4‖u1 − u2‖s−1, u1, u2 ∈ Hs−1.

5
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Applying Kato’s theory for abstract quasilinear evolution equations [40], we obtain the local
well-posedness of equation (1.1) in Hs , for 3

2 < s < m. The solution u(x, t) belongs to
C([0, t0),H

s) ∩ C1([0, t0),H
s−1). �

It should be noticed that a local well-posedness result is the best one can hope for. Indeed,
in the BBM case all solutions are global in time, but in the Camassa–Holm case some solutions
are global and some develop singularities in finite time, depending on the initial data. The
singularities are of wave-breaking type, that is the solution remains bounded but its slope
becomes unbounded in finite time [13, 14, 16–18]. In the non-periodic case, a continuation
of the solutions of the CH equation after wave breaking was established by Bressan and
Constantin [10].

3. Periodic travelling-wave solutions

We are looking for a travelling-wave solution of (1.1) of the form u(x, t) = ϕ(x − vt). We
assume that ϕ is smooth and bounded in R. The following two cases appear:

(i) ϕ′ �= 0 in R and ϕ− < ϕ < ϕ+ (corresponding to the kink-wave solution);
(ii) ϕ′(ξ) = 0 for some ξ ∈ R. Denote ϕ0 = ϕ(ξ), ϕ2 = ϕ′′(ξ).

Below we will deal with the second case. Replacing in (1.1) we get

−vϕ′ + (a(ϕ))′ + vϕ′′′ =
(

b′(ϕ)
ϕ′2

2
+ b(ϕ)ϕ′′

)′
. (3.1)

By integrating (3.1) twice, one obtains

−vϕ + a(ϕ) + vϕ′′ = b′(ϕ)
ϕ′2

2
+ b(ϕ)ϕ′′ + c1, (3.2)

[v − b(ϕ)]
ϕ′2

2
= c2 + c1ϕ +

v

2
ϕ2 − A(ϕ), A(ϕ) =

∫ ϕ

0
a(s) ds, (3.3)

with some constants c1, c2. In case (ii), one has respectively

c1 = a(ϕ0) − vϕ0 + (v − b(ϕ0))ϕ2,

c2 = A(ϕ0) + 1
2vϕ2

0 − ϕ0a(ϕ0) − (v − b(ϕ0))ϕ0ϕ2 = A(ϕ0) − 1
2vϕ2

0 − c1ϕ0.

Next, we are going to look for periodic travelling-wave solutions ϕ. Consider in the plane
(X, Y ) = (ϕ, ϕ′) the Hamiltonian system

Ẋ = [v − b(X)]Y = HY ,

Ẏ = 1
2b′(X)Y 2 − a(X) + vX + c1 = −HX,

(3.4)

with a Hamiltonian function

H(X, Y ) = [v − b(X)]
Y 2

2
+ A(X) − v

2
X2 − c1X.

Then (3.3) becomes H(ϕ, ϕ′) = c2 and the curve s → (ϕ(s − s0), ϕ
′(s − s0)) determined by

(3.3) lies on the energy level H = c2 of the Hamiltonian H(X, Y ). Within the analytical class,
system (3.4) has periodic solutions if and only if it has a centre. Each centre is surrounded
by a continuous band of periodic trajectories (called period annulus) which terminates at a
certain separatrix contour on the Poincaré sphere. As far as the straight lines X = X0 where
v − b(X0) = 0 are (unions of) trajectories, the critical points of centre type of (3.4) are given
by the critical points on Y = 0 having a negative Hessian. These are the points (X0, 0), where

c1 + vX0 − a(X0) = 0, [v − b(X0)][v − a′(X0)] < 0. (3.5)

6
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(For simplicity, we will not consider here the case of a degenerate centre when the Hessian
becomes zero.)

The above considerations lead us to the following statement.

Proposition 1. Let c1 and v be constants such that conditions (3.5) are satisfied for some
X0 ∈ R. Then there is an open interval � containing X0, such that

(i) for any ϕ0 ∈ �,ϕ0 < X0, the solution of (3.1) satisfying

ϕ(ξ) = ϕ0, ϕ′(ξ) = 0, ϕ′′(ξ) = c1 + vϕ0 − a(ϕ0)

v − b(ϕ0)
,

is periodic;
(ii) if ϕ1 ∈ �,ϕ1 > X0 is the nearest to X0 solution of H(X, 0) = H(ϕ0, 0), then

ϕ0 � ϕ � ϕ1;
(iii) if T is the minimal period of ϕ, then in each interval [s, s + T ) the function ϕ has just one

minimum and one maximum (equal to ϕ0 and ϕ1, respectively) and is strictly monotone
elsewhere.

Proof. Part (i) follows from the analysis already done above. Parts (ii) and (iii) follow from
the fact that H(X, Y ) is symmetric with respect to Y and because for any fixed X̄ the equation
H(X̄, Y ) = const has just two solutions Ȳ ,−Ȳ . �

Example. Assume that a, b are polynomials and deg a = 2, deg b � 1. For c1, v properly
chosen, the quadratic equation in (3.5) will have two distinct real roots X1 < X2. It is easy
to see that if v − b(X) �= 0 in [X1, X2], then (3.5) holds for just one of these roots. If
a′′b′ < 0 and v − b(X) vanishes at X1, then (3.5) holds for X2, and vice versa. Finally,
if a′′b′ < 0 and v − b(X) has a root within (X1, X2), then both X1 and X2 satisfy (3.5).
To summarize, the phase portraits of all quadratic systems (3.4) (including the exceptional
case deg a � 1, deg b = 1) satisfying (3.5), that is having a centre, are divided into seven
topologically different classes, see, e.g. [32].

Remark 1. Below, we shall denote �− = � ∩ {(−∞, X0)},�+ = � ∩ {(X0,∞)}. It is
possible that (3.3) also has periodic solutions for initial values ϕ0 far from X0. To study them,
it is needed to specify the functions a and b in (1.1).

Let us denote

U(s) = 2c2 + 2c1s + vs2 − 2A(s)

v − b(s)
= 2A(ϕ0) − vϕ2

0 − 2c1ϕ0 + 2c1s + vs2 − 2A(s)

v − b(s)
.

Then for ϕ0 � ϕ � ϕ1 one can rewrite (3.3) as ϕ′(σ ) = √
U(ϕ(σ)). Integrating the equation

along the interval [ξ, s] ⊂ [ξ, ξ + T/2] yields an implicit formula for the value of ϕ(s):∫ ϕ(s)

ϕ0

dσ√
U(σ)

= s − ξ, s ∈ [ξ, ξ + T/2]. (3.6)

For s ∈ [ξ + T/2, ξ + T ] one has ϕ(s) = ϕ(T + 2ξ − s). We recall that the period function T
of a Hamiltonian flow generated by H0 ≡ 1

2Y 2 − 1
2U(X) = 0 is determined from

T =
∫ T

0
dt =

∮
H0=0

dX

Y
= 2
∫ ϕ1

ϕ0

dX√
U(X)

. (3.7)

This is in fact the derivative (with respect to the energy level) of the area surrounded by the
periodic trajectory through the point (ϕ0, 0) in the (X, Y ) = (ϕ, ϕ′) plane.

7
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Consider the continuous family of periodical travelling-wave solutions {u = ϕ(x−vt)} of
(1.1) and (3.3) going through the points (ϕ, ϕ′) = (ϕ0, 0) where ϕ0 ∈ �−. For any ϕ0 ∈ �−,
denote by T = T (ϕ0) the corresponding period. One can see (e.g., by using formula (3.7))
that the period function ϕ0 → T (ϕ0) is smooth. To check this, it suffices to perform a change
of the variable

X = ϕ1 − ϕ0

2
s +

ϕ1 + ϕ0

2
(3.8)

in integral (3.7) and use that

U(ϕ0) = U(ϕ1) = 0. (3.9)

Also, it is not difficult to verify (see section 7) that

T (ϕ0) → T0 = 2π

√
v − b(X0)

a′(X0) − v
as ϕ0 ↑ X0.

Conversely, taking v, c1 to satisfy the conditions of proposition 1 and fixing T in a proper
interval, one can determine ϕ0 and ϕ1 as smooth functions of v, c1 so that the periodic solution
ϕ given by (3.6) will have a period T. The condition for this is the monotonicity of the period.

Definition 1. We say that the period T = T (ϕ0) is not critical provided that T ′(ϕ0) �= 0.

If the period T (ϕ0) is not critical for any ϕ0 ∈ �−, then the period function is strictly monotone
along the period annulus and its range is an open interval I having T0 as an endpoint.

Proposition 2. Let A be a period annulus of (3.4) which surrounds a nondegenerate centre
and has a monotone period function. Then for any T ∈ I there is a unique ϕ0 ∈ �− satisfying
T (ϕ0) = T . Its derivative ϕ̇0 with respect to v is determined from

ϕ̇0[c1 + vϕ0 − a(ϕ0)]
d

dh

∮
H=h

dx

y
= d

dh

∮
H=h

(x2 + y2 − ϕ2
0) dx

2y
, (3.10)

where

h = A(ϕ0) − v

2
ϕ2

0 − c1ϕ0. (3.11)

Proof. We use the implicit function theorem (IFT) and the Gelfand–Leray form (see [6,
chapter 3]). Let I be the range of the period function along A. For T ∈ I and ϕ0 ∈ �−, denote

G(v, c1, ϕ0) = Ḡ(v, c1, h) = T (ϕ0) − T =
∮

H=h

dx

y
− T .

Then

0 �= T ′(ϕ0) = ∂G

∂ϕ0
= dh

dϕ0

∂Ḡ

∂h
= [a(ϕ0) − vϕ0 − c1]

d

dh

∮
H=h

dx

y

and the IFT works. Hence

Ḡ = ∂Ḡ

∂h
ḣ +

∂Ḡ

∂v
= 0. (3.12)

From H(x, y) = h, we obtain the covariant derivatives

(v − b(x))y
dy

dh
= 1,

1

2
(y2 − x2) + (v − b(x))yẏ = 0. (3.13)

Therefore, by using the Gelfand–Leray form to calculate the derivatives, we get

Ḡ(v, c1, h) = d

dh

∮
H=h

(v − b(x))y dx − T ,
∂Ḡ

∂h
= d

dh

∮
H=h

dx

y
, (3.14)

8
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∂Ḡ

∂v
= d

dh

∮
H=h

[y + (v − b(x))ẏ] dx = d

dh

∮
H=h

(x2 + y2) dx

2y
. (3.15)

Hence, by (3.12), (3.14) and (3.15), we obtain

ḣ
d

dh

∮
H=h

dx

y
+

d

dh

∮
H=h

(x2 + y2) dx

2y
= 0. (3.16)

Finally, from (3.11) one obtains ḣ = − 1
2ϕ2

0 + [a(ϕ0)− vϕ0 − c1]ϕ̇0. Together with (3.16), this
implies (3.10). �

Remark 2. Obviously, one can formulate a local variant of proposition 2 concerning a given
noncritical period T (ϕ0) only. As far as T ′(ϕ0) �= 0, the same proof clearly goes and no
restrictions concerning the period annulus A are needed.

The perturbation result we establish below will be needed in section 6. Instead of (1.1),
consider now a small perturbation of the generalized BBM equation

ut + (a(u))x − uxxt = γ

(
b′(u)

u2
x

2
+ b(u)uxx

)
x

, |γ | � 1 (3.17)

and let {ϕγ (x − vt)} be the family of corresponding periodic travelling-wave solutions going
through points

(
ϕ

γ

0 , 0
)

in the (ϕ, ϕ′) plane. Denote the related periods by T
(
ϕ

γ

0

)
.

Proposition 3. Assume that the period T = T
(
ϕ0

0

)
related to the solution ϕ0(x − vt) of (3.17)

(with γ = 0) is not critical. Then

(i) there is a smooth function γ → ϕ0(γ ) defined for small |γ | and satisfying ϕ0(0) = ϕ0
0 ,

such that the travelling-wave solution ϕγ (x − vt) of (3.17) going through the point
(ϕ0(γ ), 0) is periodical and has a (minimal) period T;

(ii) max[0,T ] |ϕγ − ϕ0| = O(γ ).

Proof.

(i) The proof relies on the implicit function theorem. Consider system (3.4) with b replaced
by γ b. Since for ϕ0 ∈ �− the point (ϕ0, 0) is not critical for (3.4), IFT yields that there
is a smooth function ϕ1 = ϕ1(ϕ0, γ ) determined from H(ϕ1, 0) = H(ϕ0, 0), which takes
values in �+ and ϕ0 � ϕγ � ϕ1. Introducing a new variable (3.8) in (3.7) and making
use of (3.9), we can rewrite (3.7) in the form G(γ, ϕ0) = 0 where

G(γ, ϕ0) = 2
∫ 1

−1

ds√
(1 − s2)U1(γ, ϕ0, s)

− T ,

with U1 a smooth positive function. We further have

G
(
0, ϕ0

0

) = 0,
dG(γ, ϕ0)

dϕ0

∣∣∣∣
γ=0

= T ′(ϕ0
0

) �= 0,

therefore (i) follows, again by the IFT.
(ii) Consider system (3.4) with b replaced by γ b and initial data X(ξ) = ϕ0(γ ), Y (ξ) = 0.

By the uniqueness and the smooth dependence theorems, the solution ϕγ is smooth and
therefore a uniformly Lipschitz continuous function with respect to γ for |γ | small, on
each interval [ξ, ξ + T ]. �

9
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In support to the hypothesis of proposition 3, we state the following (in fact, known) result
about the period T = T (ϕ0).

Proposition 4. (i) There is no critical period provided that a(u) in (3.17) is a polynomial of
degree 2. (ii) There is at most one critical period, if a(u) is a polynomial of degree 3.

Proof. Consider the period function related to the Hamiltonian system (3.4) (with b(X) = 0)
as a function T (h) of the energy level H = h. It is well known that T ′(h) �= 0 if deg a = 2
[24] and that T ′(h) has at most one zero if deg a = 3 [28]. As

d

dϕ0
= [a(ϕ0) − vϕ0 − c1]

d

dh

and the coefficient is not zero for ϕ0 ∈ �− according to (3.5), the claim follows. �

4. Conservation laws and conditional stability

We now turn to our main stability problem. Take v ∈ R and denote by ϕv the periodic
travelling-wave solution u = ϕ(x − vt) of (1.1).

Definition 2. The periodic travelling-wave solution ϕv of (1.1) is said to be stable, if for
every ε > 0 there is δ > 0 such that if u ∈ C([0, t0),H

1) is a solution of (1.1) satisfying
‖u(0) − ϕv‖1 < δ, then

inf
r∈R

‖u(·, t) − ϕ(· − r)‖1 < ε for every t ∈ [0, t0).

As usual, an important role in our construction will be played by some functionals which are
invariant with respect to time t. Equation (1.1) possesses the following conservation laws:

E(u) = −
∫ T

0

[
A(u) +

b(u)

2
u2

x

]
dx,

Q(u) = 1

2

∫ T

0

(
u2 + u2

x

)
dx,

V (u) =
∫ T

0
u dx,

where T is the minimal period of the solution u(x, t) and A′(u) = a(u). Let us denote for
short M = E + vQ. In terms of E,Q and V , equation (3.2) with ϕ = ϕv reads

M ′(ϕv) + c1 = E′(ϕv) + vQ′(ϕv) + c1V
′(ϕv) = 0. (4.1)

Let

d(v) = M(ϕv). (4.2)

Then differentiating (4.2) with respect to v, we obtain

ḋ(v) = Q(ϕv),

d̈(v) = 〈Q′(ϕv), ϕ̇v〉 = d

dv

(
1

2

∫ T

0

(
ϕ2

v + ϕ′
v

2) dx

)
.

(4.3)

Consider in L2[0, T ] the operator Hv defined by the formal differential expression

Hv = M ′′(ϕv) = (b(ϕv) − v)∂2
x + b′(ϕv)ϕ

′
v∂x + v − a′(ϕv) + 1

2b′′(ϕv)ϕ
′2
v + b′(ϕv)ϕ

′′
v . (4.4)

As Hvϕ
′
v = 0, zero is in the spectrum of Hv . We make the following assumption concerning

Hv and d̈(v).

10
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Assumption 1.

(i) The operator Hv has a unique negative eigenvalue, a simple eigenvalue 0 and the rest of
its spectrum is positive.

(ii) d̈(v) > 0.

For ε > 0, consider a neighbourhood Uε in the set of all translations of ϕv defined by

Uε = {u ∈ H 1([0, T ]) : inf
r∈R

‖u − ϕv(· − r)‖1 < ε}.
By using (4.1) and assumption 1(i), one can establish the following statement, whose proof is
the same as in [29] and for this reason we omit it.

Lemma 1. There exists ε > 0 and a C1-map α : Uε → R/T such that for all u ∈ Uε and all
r ∈ R, the following holds:

(i) ‖u(· + α(u)) − ϕ‖1 � ‖u(· + r) − ϕ‖1,

(ii) 〈u(· + α(u)), ϕ′
v〉 = 0,

(iii) α(u(· + r)) = α(u) − r, modulo the period.

Proof. [See lemma 3.2 in [29]].
Note that α(u) is constructed to be a minimizer of the norm ‖u(·+α(u))−ϕ‖1. Moreover,

|α(u)| is smaller than the half-period. For other details, see the proof of lemma 3.2 in [29].
�

Lemma 2. If assumption 1 holds and y satisfies 〈Q′(ϕv), y〉 = 〈ϕ′
v, y〉 = 0, then there exists

K > 0 so that

〈Hvy, y〉 > K‖y‖2
1.

Proof. Differentiating (4.1) with respect to v yields (since c1 does not depend on v)

Hvϕ̇v = −Q′(ϕv), (4.5)

and from (4.3) we obtain

〈Hvϕ̇v, ϕ̇v〉 = −d̈(v) < 0. (4.6)

Putting y = a1χ + p1, p1 ∈ P , where χ is an eigenfunction of Hv corresponding to the
negative eigenvalue −λ2

0 and P is the positive subspace of Hv , we obtain

〈Hvy, y〉 = −a2
1λ

2
0 + 〈Hvp1, p1〉.

Write ϕ̇v = a0χ + b0ϕ
′
v + p0, p0 ∈ P . From (4.6) we have

0 > 〈Hvϕ̇v, ϕ̇v〉 = −a2
0λ

2
0 + 〈Hvp0, p0〉

and

0 = −〈Q′(ϕv), y〉 = 〈Hvϕ̇v, y〉
= 〈− a0λ

2
0χ + Hvp0, a1χ + p1

〉 = −a0a1λ
2
0 + 〈Hvp0, p1〉.

Hence

〈Hvy, y〉 = −a2
1λ

2
0 + 〈Hvp1, p1〉 � −a2

1λ
2
0 +

〈Hvp0, p1〉2

〈Hvp0, p0〉
= −a2

1λ
2
0 +

a2
0a

2
1λ

4
0

λ2
0a

2
0 − d̈(v)

= a2
1K1.

The rest of the proof is the same as in [33, pp 310–1]. �
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Proposition 5. If assumption 1 holds, then for any positive ε there exists K > 0 such that for
any solution of (1.1) satisfying u ∈ Uε,Q(u) = Q(ϕv), one has

E(u) − E(ϕv) + c1V (u) − c1V (ϕv) � K‖u(. + α(u)) − ϕv‖2
1. (4.7)

Proof. Denote ψ = u(· + α(u)) − ϕv = µ(ϕv − ϕ′′
v ) + y where 〈ϕv − ϕ′′

v , y〉 = 0. By the
translation-invariant property of Q, we have

Q(ϕv) = Q(u) = Q(ϕv) + 〈Q′(ϕv), ψ〉 + O
(‖ψ‖2

1

)
= Q(ϕv) + 〈ϕv − ϕ′′

v , µ(ϕv − ϕ′′
v ) + y〉 + O

(‖ψ‖2
1

)
= Q(ϕv) + µ‖ϕv − ϕ′′

v‖2
L2 + O

(‖ψ‖2
1

)
.

This implies µ = O
(‖ψ‖2

1

)
. Since Q(u) = Q(ϕv), the identity M ′′(ϕv) = Hv and the Taylor

expansion give

E(u) − E(ϕv) + c1

∫ T

0
ψ dx = 1

2
〈Hvy, y〉 + o

(‖ψ‖2
1

)
.

From lemma 1 we have

0 = 〈u(· + α(u)), ϕ′
v〉 = 〈µ(ϕv − ϕ′′

v ) + y + ϕv, ϕ
′
v〉 = 〈y, ϕ′

v〉.
From the above equality and lemma 2 we obtain

E(u) − E(ϕv) + c1

∫ T

0
ψ dx � K‖y‖2

1 + o
(‖ψ‖2

1

)
.

This estimate together with

‖y‖1 = ‖ψ − µ(ϕ − ϕ′′)‖1 � ‖ψ‖1 − |µ‖|ϕ − ϕ′′‖1

yield

E(u) − E(ϕv) + c1

∫ T

0
ψ dx � K‖ψ‖2

1

for ‖ψ‖1 sufficiently small. This completes the proof. �

Theorem 2. If assumption 1 holds, then the travelling-wave solution ϕv is stable.

Proof. Suppose that ϕv is unstable. Then there exists a sequence of initial data un(0) ∈ H 1

and η > 0 such that

‖un(0) − ϕv‖1 → 0

but

sup
t∈[0,t0]

inf
r∈R

‖un(·, t) − ϕv(· − r)‖1 � η, (4.8)

where un ∈ C([0, t0);H 1) is a solution of (1.1) with initial data un(0). Let tn ∈ [0, t0) be the
first time so that

inf
r∈R

‖un(·, tn) − ϕv(· − r)‖1 = η.

We have

E(un(·, tn)) = E(un(0)) → E(ϕv),

Q(un(·, tn)) = Q(un(0)) → Q(ϕv),

V (un(·, tn)) = V (un(0)) → V (ϕv).

12
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Choose a sequence ψn ∈ H 1 such that Q(ψn) = Q(ϕv) and ‖ψn − un(·, tn)‖1 → 0. By
continuity of E and V,E(ψn) → E(ϕv) and V (ψn) → V (ϕv). From (4.7) we have

E(ψn) − E(ϕv) + c1(V (ψn) − V (ϕv)) � K‖ψn(· + α(ψn)) − ϕv‖2
1.

Therefore ‖ψn − ϕv(· − α(ψn))‖1 → 0, which implies

‖un − ϕv(· − α(ψn))‖1 → 0.

This however contradicts (4.8). The proof of theorem 2 is complete. �

In order to apply theorem 2 we have, according to assumption 1, to determine the sign of
the derivative d̈(v). Using the same technique as in the proof of proposition 2, we obtain the
following expression of d̈(v) through line integrals. When a(u) and b(u) are polynomials (or
even rational functions), these are complete Abelian integrals. A lot of methods have been
developed to investigate Abelian integrals, which could be applied here to study the sign of
d̈(v).

Proposition 6. Assume that the period T = T (ϕ0) = T̄ (h) is not critical where h is given by
(3.11). Then

d̈(v) = W(h)

4T̄ ′(h)
, (4.9)

with

W(h) =
(

d

dh

∮
H=h

dx

y

)(
d

dh

∮
H=h

(
x4 + 2x2y2 − 1

3y4
)

dx

y

)
−
(

d

dh

∮
H=h

(x2 + y2) dx

y

)2

.

Proof. We apply again (3.13) and use the Gelfand–Leray form (in both directions) to calculate
the needed derivatives. As

ḋ(v) = 1

2

∮
H=h

(x2 + y2) dx

y
= 1

2

∮
H=h

y dx +
1

2

d

dh

∮
H=h

x2(v − b(x))y dx,

one obtains

d̈(v) = ḣ

2

d

dh

∮
H=h

(x2 + y2) dx

y
+

1

2

d

dv

(∮
H=h

y dx +
d

dh

∮
H=h

x2(v − b(x))y dx

)
= ḣ

2

d

dh

∮
H=h

(x2 + y2) dx

y
+
∮

H=h

(x2 − y2) dx

4(v − b(x))y
+

d

dh

∮
H=h

(
x2y

2
+

x2(x2 − y2)

4y

)
dx

= ḣ

2

d

dh

∮
H=h

(x2 + y2) dx

y
+

1

4

d

dh

∮
H=h

(x4 + 2x2y2 − 1
3y4) dx

y
.

Replacing the value of ḣ from (3.16), we come to the needed formula. �

5. Examples

Example 5.1 (the BBM equation). Consider the BBM equation

ut + 2ωux + 3uux − uxxt = 0, ω ∈ R (BBM)

which is a particular case of (1.1) with a(u) = 2ωu + 3
2u2 and b = 0. To apply theorem 2 to

BBM, we have to verify assumption 1. Namely, to establish that the corresponding operator
Hv has the needed spectral properties (i) and to prove the convexity of d(v).

13
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Figure 1. BBM, case v > 0.

Let us first mention that (3.5) reduces now to D ≡ (v − 2ω)2 + 6c1 > 0 and

X0 = v − 2ω + D1/2

3
, � =

(
v − 2ω − D1/2

3
,
v − 2ω + 2D1/2

3

)
if v > 0,

X0 = v − 2ω − D1/2

3
, � =

(
v − 2ω − 2D1/2

3
,
v − 2ω + D1/2

3

)
if v < 0.

By the definition of c1, c2 and U(s), one obtains in the considered case

U(s) ≡ 1

v
(ϕ0 − s)

[
s2 + (ϕ0 + 2ω − v)s − (2ϕ2

0 + (2ω − v)ϕ0 + 2vϕ2
)]

= (s − ϕ0)(ϕ1 − s)(s + ϕ1 + ϕ0 + 2ω − v)

v
.

We note that the last equality is a consequence of proposition 1(ii) which implies that
U(ϕ1) = U(ϕ0) = 0. To obtain an explicit formula for the travelling wave ϕv , we substitute
σ = ϕ0 + (ϕ1 − ϕ0)z

2, z > 0, in order to express the integral in (3.6) as an elliptic integral of
the first kind in a Legendre form. If v < 0, one obtains∫ Z(s)

0

dz√
(1 − z2)(1 − k2z2)

= α(s − ξ),

where

Z(s) =
√

ϕv(s) − ϕ0

ϕ1 − ϕ0
, k2 = − ϕ1 − ϕ0

ϕ1 + 2ϕ0 + 2ω − v
, α =

√
ϕ1 + 2ϕ0 + 2ω − v

4v
.

Thus, we get the expression

ϕv(s) = ϕ0 + (ϕ1 − ϕ0)sn
2(α(s − ξ); k). (5.1)

Similarly, in the case v > 0 (see figure 1) we obtain (with the same Z)∫ Z(s)

0

dz√
(1 − z2)(k′2 + k2z2)

= α(s − ξ),

where

k2 = ϕ1 − ϕ0

ϕ0 + 2ϕ1 + 2ω − v
, k2 + k′2 = 1, α =

√
ϕ0 + 2ϕ1 + 2ω − v

4v
,

and the expression for ϕv

ϕv(s) = ϕ0 + (ϕ1 − ϕ0)cn
2(α(s − ξ); k). (5.2)

To calculate the period of ϕv , we use (3.7) and the same procedure as above. In this way
we get in both cases

T = 2
∫ ϕ1

ϕ0

dσ√
U(σ)

= 2

α

∫ 1

0

dz√
(1 − z2)(1 − k2z2)

= 2K(k)

α
.
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We return to the operator Hv defined by (4.4) which now has the form

Hv = −v∂2
x + v − 2ω − 3ϕv, (5.3)

where ϕv is determined by (5.1) or (5.2). Take v > 0 and consider the spectral problem

Hvψ = λψ, ψ(0) = ψ(T ), ψ ′(0) = ψ ′(T ). (5.4)

We will denote the operator just defined again by Hv . It is a self-adjoint operator acting in
H 2([0, T ]). From the Floquet theory applied to (5.4) it follows [44] that its spectrum is purely
discrete,

λ0 < λ1 � λ2 < λ3 � λ4 < · · · (5.5)

where λ0 is always a simple eigenvalue. If ψn(x) is the eigenfunction corresponding to λn,
then

ψ0 has no zeros in [0, T ];
ψ2n+1, ψ2n+2 have each just 2n + 2 zeros in [0, T ).

(5.6)

Proposition 7. The linear operator Hv defined by (5.3) and (5.4) has the following spectral
properties for v > 0:

(i) The first three eigenvalues of Hv are simple.
(ii) The second eigenvalue of Hv is λ1 = 0.

Proof. By (3.1), Hvϕ
′
v = 0, hence ψ = ϕ′

v is an eigenfunction corresponding to zero
eigenvalue. By proposition 1(iii), ϕ′ has just two zeros in [0, T ) and therefore by (5.6) either
0 = λ1 < λ2 or λ1 < λ2 = 0 or λ1 = λ2 = 0. We are going to verify that only the first
possibility 0 = λ1 < λ2 can occur. From the definition of k and α, one obtains that

ϕ0 + 2ϕ1 + 2ω − v = 4vα2, ϕ1 − ϕ0 = 4vk2α2.

Then using (5.2) we get

Hv = −v∂2
x + v − 2ω − 3ϕ0 − 3(ϕ1 − ϕ0)cn

2(αx; k)

= −v∂2
x + v − 2ω − 3ϕ1 + 3(ϕ1 − ϕ0)sn

2(αx; k)

= −v∂2
x − vα2[4k2 + 4 − 12k2sn2(αx; k)]

= vα2
[−∂2

y − 4k2 − 4 + 12k2sn2(y; k)
] ≡ vα2�,

where y = αx. The operator � is related to Hill’s equation with Lamé potential

�w = − d2

dy2
w + [12k2sn2(y; k) − 4k2 − 4]w = 0

and its spectral properties in the interval [0, 2K(k)] are well known [2, 5, 36]. The first three
(simple) eigenvalues and corresponding periodic eigenfunctions of � are

µ0 = k2 − 2 − 2
√

1 − k2 + 4k4 < 0,

ψ0(y) = dn(y; k)[1 − (1 + 2k2 − √
1 − k2 + 4k4)sn2(y; k)] > 0,

µ1 = 0,

ψ1(y) = dn(y; k)sn(y; k)cn(y; k) = 1
2 (d/dy)cn2(y; k),

µ2 = k2 − 2 + 2
√

1 − k2 + 4k4 > 0,

ψ2(y) = dn(y; k)[1 − (1 + 2k2 +
√

1 − k2 + 4k4)sn2(y; k)].

As the eigenvalues of Hv and � are related by λn = vα2µn, we conclude that for v > 0 the
first three eigenvalues of (5.3) and (5.4) are simple and moreover λ0 < 0, λ1 = 0, λ2 > 0.
The corresponding eigenfunctions are ψ0(αx), ψ1(αx) = const · ϕ′

v(x) and ψ2(αx). �
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.

Figure 2. Three topologically different phase portraits of the three cases related to the symmetric
Hamiltonian.

What about the sign of d̈(v), it is easily seen it is positive when ω = 0 (see the end of this
section). For ω �= 0, the proof is much more long and complicated. It can be done by
following the procedure we propose in the following subsection. For this reason, we are not
going to investigate the case ω �= 0 in the present paper.

Example 5.2 (the modified BBM equation). Our second example is concerned with the
periodic travelling-wave solutions of the equation

ut + 2wux + β(u3)x − uxxt = 0, (mBBM)

where ω, β ∈ R and β �= 0. For this case, a(u) = 2wu + βu3 and b(u) = 0 in (1.1). For
definiteness, we take ϕv = ϕ(x −vt) where v > 0. The Hamiltonian flow in (3.4) is generated
by

H(X, Y ) = v

2
Y 2 +

β

4
X4 +

(
ω − v

2

)
X2 − c1X.

Our plan is to study here the ‘symmetric’ case c1 = 0. The general case could then be
considered as a perturbation of the symmetric one (at least for c1 small). It is well known that
there are three cases related to the symmetric Hamiltonian

Y 2 +
β

2v
X4 +

(
2ω

v
− 1

)
X2, v > 0,

see, e.g. [35]:

(i) global centre: β > 0, 2ω > v;

(ii) truncated pendulum: β < 0, 2ω > v;

(iii) Duffing oscillator: β > 0, 2ω < v,

with three topologically different phase portraits (see figure 2). There is one continuous family
of periodic orbits in cases (i) and (ii) and three families (left, right, outer) in (iii):

This also holds true for all c1 in case (i) and for c2
1 < 4

27β−1(v − 2ω)3 in (ii) and (iii). In
the symmetric case c1 = 0 we deal with, the periodic solutions exist if and only if ϕ0 ∈ �−

(see proposition 1), where �− = (−∞, 0) in case (i); �− = (−( v−2ω
β

)1/2
, 0
)

in case (ii);

�− = (−( 2v−4ω
β

)1/2
,−( v−2ω

β

)1/2)
in case (iii), left family; �− = (0,

(
v−2ω

β

)1/2)
in case (iii),

right family; �− = (−∞,−( 2v−4ω
β

)1/2)
in case (iii), outer family. The respective functions
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U(s) take the form:

U(s) = β

2v

(
ϕ2

0 − s2
)(4ω − 2v

β
+ ϕ2

0 + s2

)
in case (i) and case (iii), outer family,

U(s) = − β

2v

(
ϕ2

0 − s2
)(2v − 4ω

β
− ϕ2

0 − s2

)
in case (ii),

U(s) = β

2v

(
s2 − ϕ2

1

)(
ϕ2

0 − s2
)

in case (iii), left family,

U(s) = β

2v

(
s2 − ϕ2

0

)(
ϕ2

1 − s2
)

in case (iii), right family.

In a similar way as we have done in the (BBM) case, we can use formula (3.6) to calculate
explicitly ϕv . By an appropriate change of the variables in (3.6), one can express the solution
through standard elliptic integrals (we omit the details). Up to a translation of the argument,
we have

ϕv(s) = ϕ0 cn(αs; k), α =
√

2ω − v + βϕ2
0

v
, k =

√
βϕ2

0

4ω − 2v + 2βϕ2
0

, (i) and (iii) outer,

ϕv(s) = ϕ0 sn(αs; k), α =
√

4ω − 2v + βϕ2
0

2v
, k =

√
βϕ2

0

2v − 4ω − βϕ2
0

, (ii),

ϕv(s) = ϕ0 dn(αs; k), α =
√

βϕ2
0

2v
, k =

√
4ω − 2v + 2βϕ2

0

βϕ2
0

, (iii) left,

ϕv(s) = ϕ1 dn(αs; k), α =
√

βϕ2
1

2v
, k =

√
4ω − 2v + 2βϕ2

1

βϕ2
1

, (iii) right.

These formulae of α and k yield the following expressions and range I for the period

T = 4

√
v

2ω − v

√
1 − 2k2K(k), k ∈

(
0,

1√
2

)
, I =

(
0, 2π

√
v

2ω − v

)
, (i),

T = 4

√
v

2ω − v

√
1 + k2K(k), k ∈ (0, 1), I =

(
2π

√
v

2ω − v
,∞
)

, (ii),

T = 2

√
v

v − 2ω

√
2 − k2K(k), k ∈ (0, 1), I =

(
2π

√
v

2v − 4ω
,∞
)

, (iii) left and right,

T = 4

√
v

v − 2ω

√
2k2 − 1K(k), k ∈

(
1√
2
, 1

)
, I = (0,∞), (iii) outer.

Indeed, the formulae just derived imply that T = T (k) is strictly decreasing in case (i) and
strictly increasing in the other cases. In fact, for (i), (ii) and (iii) outer this follows already
from (3.11) and [28]. As far as cases (iii) left and right are concerned, now the result follows
from

d

dk
(
√

2 − k2K(k)) = (2 − k2)K ′ − kK√
2 − k2

= K ′ + E′
√

2 − k2
> 0.

On the other hand, in all cases one has dk/dϕ0 �= 0. Therefore, given T ∈ I , the condition
holds in order to determine ϕ0 by the implicit function theorem so that the respective ϕ would
have a period T.
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Finally, by using the above formulae one easily obtains that

Hv = −v∂2
x + v − 2ω − 3βϕ2

v = vα2[−∂2
y + 6k2sn2(y; k) + m],

where y = αx and m = −1 − 4k2 in cases (i) and (iii) outer, m = −4 − k2 in cases (iii) left
and right, m = −1 − k2 in case (ii), respectively.

Lemma 3. The first five eigenvalues of the operator � defined by the differential expression
� = −∂2

y + 6k2sn2(y; k), with periodic boundary conditions on [0, 4K(k)], are simple. These
eigenvalues and their respective eigenfunctions are

µ0 = 2 + 2k2 − 2
√

1 − k2 + k4, ψ0(y) = 1 − (1 + k2 − √
1 − k2 + k4)sn2(y; k),

µ1 = 1 + k2, ψ1(y) = cn(y; k) dn(y; k) = sn′(y; k),

µ2 = 1 + 4k2, ψ2(y) = sn(y; k) dn(y; k) = −cn′(y; k),

µ3 = 4 + k2, ψ3(y) = sn(y; k)cn(y; k) = −k−2 dn′(y; k),

µ4 = 2 + 2k2 + 2
√

1 − k2 + k4, ψ4(y) = 1 − (1 + k2 +
√

1 − k2 + k4)sn2(y; k).

Proof. The equalities �ψn(y) = µnψn(y), 0 � n � 4 are established by calculation. By
(5.5), (5.6) and the properties of elliptic functions, µn are simple and the rest of the spectrum
lies in the interval (µ4,∞). �

Corollary 1. The first three eigenvalues of the operator �, equipped with periodic boundary
conditions on [0, 2K(k)], are simple and equal to µ0, µ3, µ4.

By lemma 3 and its corollary, ϕ′
v is the second eigenfunction of the operator Hv in the cases:

truncated pendulum and Duffing oscillator (left and right). For these cases, it makes sense to
investigate the sign of d̈(v) which we do in the following proposition.

Proposition 8. Assume that T ∈ I = (T0,∞) and ϕv = ϕ(x − vt), v > 0, is the periodic
travelling-wave solution having a minimal period T. Then

(i) in the truncated pendulum case, one has d̈(v) < 0;
(ii) in the left (right) Duffing oscillator case, if 3v2−8ω2 � 0, then d̈(v) > 0. If 3v2−8ω2 < 0

and 2v2 − 2ωv − ω2 > 0, then there is Tmax ∈ (T0,∞) depending only on the ratio ω/v,
such that d̈(v) > 0 for T > Tmax and d̈(v) < 0 for T ∈ (T0, Tmax). If 2v2 −2ωv−ω2 � 0,
then d̈(v) < 0.

Proof. We are going to use formula (4.9). In the example we deal with, one has

y2 = U(x, h) = 2h

v
− 2ω − v

v
x2 − β

2v
x4, h = 2ω − v

2
ϕ2

0 +
β

4
ϕ4

0 .

Given a non-negative even integer n, denote In(h) = ∮
H=h

xny dx. It is well known that the
linear space of integrals {In(h), n even} forms a polynomial R[h] module with two generators,
I0(h) and I2(h). Moreover, I0 and I2 satisfy a Picard–Fuchs system of dimension two. This
implies that the ratio R(h) = I ′

2(h)/I ′
0(h) satisfies a Riccati equation. We shall use these facts

to express d̈(v) as a quadratic form with respect to I ′
0, I

′
2 with polynomial coefficients in h and

use the properties of the Riccati equation to determine the sign of d̈(v). The procedure might
seem too long, but it is universal (at least in the case when a(u) and b(u) are polynomials)
and therefore applicable to many other cases.
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Let us first express d̈(v) through the integrals In. Below, we will denote for short the
derivatives with respect to h by I ′

n, I
′′
n , etc. Using the first equality in (3.13) with b = 0, we

obtain

I ′
n(h) =

∮
H=h

xn dx

vy
.

On the other hand,∮
H=h

y3 dx =
∮

H=h

U(x, h)y dx = 2h

v
I0 − 2ω − v

v
I2 − β

2v
I4.

By using these expressions, we obtain that

d̈(v) = v

4I ′′
0

[
I ′′

0

(
I ′

4 +
β

6v2
I4 +

2ω + 5v

3v2
I2 − 2h

3v2
I0

)′
−
(

1

v
I ′

0 + I ′′
2

)2
]

. (5.7)

For reader’s convenience, below we proceed to derive the relations between integrals In and
the Picard–Fuchs system satisfied by I0 and I2.

Lemma 4. (i) The following relations hold:

(n + 6)βIn+3 + (2n + 6)(2ω − v)In+1 = 4nhIn−1, n = 1, 3, 5, . . . . (5.8)

(ii) The integrals I0 and I2 satisfy the system

4hI ′
0 − (2ω − v)I ′

2 = 3I0, −4(2ω − v)

3β
hI ′

0 +

(
4h +

4(2ω − v)2

3β

)
I ′

2 = 5I2. (5.9)

Proof. (i). Integrating by parts, we obtain the identity∮
H=h

[
xnU ′(x) +

2

3
nxn−1U(x)

]
y dx = 0. (5.10)

Indeed,∮
H=h

xnU ′(x)y dx =
∮

H=h

xny dy2 = 2

3

∮
H=h

xndy3 = −2

3
n

∮
H=h

xn−1y3dx

= −2

3
n

∮
H=h

xn−1U(x)y dx.

Identity (5.10) is equivalent to (5.8).
(ii) Similarly, one has∮

H=h

xnU ′(x) dx

y
=
∮

H=h

xn dy2

y
=
∮

H=h

2xn dy = −2n

∮
H=h

xn−1y dx,∮
H=h

xnU(x) dx

y
=
∮

H=h

xny dx.

(5.11)

Rewriting these identities by means of In, we come to the formulae

βI ′
n+3 + (2ω − v)I ′

n+1 = nIn−1, −βI ′
n+4 − 2(2ω − v)I ′

n+2 + 4hI ′
n = 2In. (5.12)

The last two relations imply

4hI ′
n − (2ω − v)I ′

n+2 = (n + 3)In. (5.13)
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Using (5.13) with n = 0, 2, we obtain the system

4hI ′
0 − (2ω − v)I ′

2 = 3I0, 4hI ′
2 − (2ω − v)I ′

4 = 5I2.

We remove I ′
4 from the last equation by using the first equation in (5.12). As a result one

obtains (5.9). �

After proving lemma 4, we return to our main goal. Using the identities

I4 = 4h

7β
I0 − 8(2ω − v)

7β
I2, I ′

4 = 1

β
I0 − 2ω − v

β
I ′

2,

and the first equation in (5.9), we remove I4, I
′
4 and I0 from (5.7). The result is

d̈(v) = v

4I ′′
0

[
I ′′

0

(
3v2 − 4βh

3βv2
I ′

0 +
2ω + 5v

3v2
I ′

2 − 2ω − v

β
I ′′

2

)
−
(

1

v
I ′

0 + I ′′
2

)2
]

. (5.14)

Now, we differentiate (5.9) and determine the second derivatives from the obtained system:

D(h)I ′′
0 = −4hI ′

0 + (2ω − v)I ′
2,

D(h)I ′′
2 = 4(2ω − v)

β
hI ′

0 + 4hI ′
2,

D(h) = 16h2 +
4(2ω − v)2

β
h.

(5.15)

Replacing in (5.14) and performing some direct calculations to simplify the result, we derive
the formula

d̈(v) = 1

9vI0

[(
8h2 +

12ω2

β
h

)
I ′2

0 + (4ω + 10v)hI ′
0I

′
2 + (2v2 − 2ωv − ω2)I ′2

2

]
.

By (5.15), the ratio R(h) = I ′
2(h)/I ′

0(h) satisfies the Riccati equation

D(h)R′ = 4(2ω − v)

β
h + 8hR − (2ω − v)R2. (5.16)

In order to remove the parameters from (5.16), we take new variables h̄, R̄ through

h = − (2ω − v)2

8β
(h̄ + 1), R(h) = −2ω − v

2β
(R̄(h̄) + 1).

Thus, we obtain the final formulae

d̈(v) = (2ω − v)2I ′2
0 (h)

72vβ2I0(h)
w(h̄, R̄),

where (below we will omit thoroughly the bars)

w(h,R) = (4v2 − 4ωv − 2ω2)R2 + (4ω2 + 8ωv − 5v2)hR

+ (2ω − v)2h2 + 3v2(R − h) − 6ω2 (5.17)

and R = R(h) satisfies the equation (and related system with respect to a dummy variable)

4(1 − h2)R′ = 1 − 2hR + R2,
ḣ = 4(1 − h2),

Ṙ = 1 − 2hR + R2.
(5.18)
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Γu

Γl

Figure 3. Phase portraint of (5.18).

Since v > 0 and I0 > 0 (this is the area integral), the sign of d̈(v) is determined by w.
The conic curve w(h,R) = 0 divides the R

2 plane into two parts W+ and W− according to the
sign of w(h,R). We have to identify the curve � in the phase portrait of (5.18) (see figure 3)
which corresponds to I ′

2/I
′
0 and determine its location with respect to W+ and W−. In the case

when d̈(v) changes sign, the main problem will be to prove that the conic curve intersects �

at most once.
It is easy to see that system (5.18) has two critical points (1, 1) and (−1,−1) which are

saddle nodes. They are connected by two separatrix trajectories, upper �u and lower �l , see
picture 3. Obviously, the phase portrait of (5.18) is symmetric with respect to the origin.

Lemma 5. In (5.18), the trajectory corresponding to the truncated pendulum case is �l . The
trajectory corresponding to the left and right Duffing oscillator cases is �u.

Proof. If ϕ0 ∈ �−, then ϕ2
0 ∈ (0, v−2ω

β

)
in the truncated pendulum and right Duffing oscillator

cases and ϕ2
0 ∈ ( v−2ω

β
, 2v−4ω

β

)
in the left case. Correspondingly, one obtains

h ∈
(

0,− (2ω − v)2

4β

)
= (hc, hs)in the truncated pendulum case,

h ∈
(

− (2ω − v)2

4β
, 0

)
= (hc, hs)in the left and right Duffing oscillator cases,

where hc is the Hamiltonian level corresponding to a centre and hs to a saddle. Moreover,
R(h) = I ′

2(h)/I ′
0(h) is analytic in a neighbourhood of h = hc and, by the mean value theorem,

lim
h→hc

R(h) = lim
h→hc

I2(h)

I0(h)
= X2

0.

We recall that X0 is the abscissa of the centre and X0 = 0 in the truncated pendulum case,
X2

0 = v−2ω
β

in the left and right Duffing oscillator case. On its turn, by Picard–Lefschetz
theory [6, chapter 3], near h = hs the integral In(h) has the expansion

In(h) = In(hs) + αn(h − hs) log |h − hs | + βn(h − hs) + γn(h − hs)
2 log |h − hs | + · · · ,

where α0 �= 0. Therefore, R(h) = I ′
2(h)/I ′

0(h) is bounded near h = hs . In terms of the
new coordinates (h̄, R̄), all this means that the phase trajectory of (5.18) corresponding to the
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truncated pendulum case is (h, R(h)) where −1 < h < 1, R(h) → ±1 as h → ±1, and R(h)

is analytic near h = −1. The unique phase curve with these properties is �l . Similarly, the
phase trajectory of (5.18) corresponding to the left and right Duffing oscillator cases has the
same ends but is analytic near h = 1, hence it is �u. �

Below, we list some properties of the separatrices �l, �u and the conic curve w = 0.
Apart from the separatrices, the conic curve depends on one parameter ω/v and undergoes
several bifurcations when ω/v varies.

Lemma 6. The separatrices �u and �l have the following properties:

(i) �u is increasing and concave, �l is increasing and convex.
(ii) The tangent to �u at (−1,−1) is h = −1, the tangent to �l at (1, 1) is h = 1.

(iii) The tangent to �u at (1, 1) and the tangent to �l at (−1,−1) have a slope 1
4 .

Proof. The proof easily follows from (5.18). Claim (iii) is a consequence of the analyticity
at the corresponding point. To establish (ii), we use the expansions containing logarithmic
terms above. They imply that the asymptotic expansion near (−1,−1) of the non-analytic
trajectories has the form −1 + µ/ log(h + 1) + · · ·. We determine µ from (5.18) and obtain
that on �u one has

R(h) = −1 − 8

log(h + 1)
+ O(log−2(h + 1)). (5.19)

A similar formula holds for �l , hence (ii) is proved. Finally, in the strip |h| < 1 one has
1 − 2hR + R2 > 0, therefore R′ > 0 and all trajectories increase. Differentiating with respect
to h the Riccati equation in (5.18), we determine the curve of inflection points R′′(h) = 0 in
the phase portrait, which is (R − h)(R2 + 2hR − 3) = 0. As R′ = 1

4 on the line R = h, by
(ii) and (iii) �u and �l cannot intersect this line. Hence, �u lies in the domain corresponding
to the concave trajectories, and �l to the convex ones. �

The proof of the statements listed below is obvious.

Lemma 7. The conic curve w(h,R) = 0 has the following properties:

(i) It goes through the critical points (1, 1) and (−1,−1) of (5.18) and w(h, h) =
6ω2(h2 − 1).

(ii) For ω = 0 it degenerates into v2(R − h)(4R − h + 3) = 0. For ω2 + 2ωv − 2v2 = 0 it
degenerates into v2h[(R − 1 + (7 ∓ 4

√
3)(h − 1)] = 0.

(iii) If (h, R(h)) are the local coordinates near (1, 1), then R′(1) = 1 − 2ω2

v2 , R′′(1) =
8ω4(ω2+2ωv−2v2)

3v6 .
(iv) If (h(R), R) are the local coordinates near (−1,−1) and ω �= 0, then h′(−1) =

0, h′′(−1) = 2v2−2ωv−ω2

3ω2 .

After the preparation done above, we proceed to prove statements (i) and (ii) of
proposition 8. To prove (i), let us denote by � the open triangle in the (h, R) plane having
vertices at (1, 1), (−1,−1) and

(
1,− 1

2

)
. By lemma 6, �l ⊂ �. On its turn, � ⊂ W−.

This holds because by lemma 7 one has w(h, h) < 0 for |h| < 1, w(1, 1) = w(−1,−1) =
0, R′(1) < 1, h′(−1) = 0, and because w

(
1,− 1

2

) = − 9
2ω(ω+2v) < 0 (recall that 2ω > v > 0

in the truncated pendulum case). Proposition 8(i) is established.
The proof of (ii) is more complicated. In this case, 2ω < v. Assume first that

ω2 + 2ωv − 2v2 > 0. Then, by lemma 7(iii), (iv) and convexity, the conic curve is a
hyperbola. One of its branches is contained in the half-plane h � −1, the other branch lies
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above its tangent line at (1, 1), namely R − 1 = R′(1)(h− 1). As R′(1) < 0 in the considered
case, by lemmas 6(i) and 7(i) we conclude that �u ⊂ W−. The same proof goes in the
degenerate case ω2 + 2ωv − 2v2 = 0.

The case ω2 + 2ωv − 2v2 < 0 is more delicate. If ω = 0, then lemmas 6(i) and 7(ii)
imply that �u ⊂ W+. Below we will take ω �= 0. Consider the branch R = r(h) of the conic
curve going through both (1, 1) and (−1,−1). Writing w(h,R) = δ0R

2 + δ1R + δ2, δ0 > 0,
one obtains

r(h) = −δ1 +
√

D

2δ0
, D = δ2

1 − 4δ0δ2 > 0, |h| < 1. (5.20)

Below we will denote this branch by C. By (5.19) and lemma 7(iv), we have near h = −1

R + 1 ∼ − 8

log(h + 1)
on �u, R + 1 ∼

√
6ω2(h + 1)

2v2 − 2ωv − ω2
on C.

This yields that for h close to −1, �u is placed above C. Similarly, by lemmas 6(iii) and
7(iii) one obtains that near h = 1, �u lies above C if 3v2 − 8ω2 � 0 and below C otherwise.
Therefore, to finish the proof of proposition 7, we have to establish the following: (i) �u

is entirely placed above C if 3v2 − 8ω2 � 0 and (ii) �u intersects the conic just once if
3v2 − 8ω2 < 0. In the first case, we would have �u ⊂ W+, while in the second one, the part
of �u near h = 1 would be in W− and the remaining part, in W+. Unfortunately, both �u and
C are concave and it is not so easy to determine the number of their intersections.

Below, we proceed to determine the number of contact points that C has with the vector
field (5.18). Because of the type of critical points, in our case the number of intersections
is less than or equal to the number of contact points. As is well known, the equation of the
contact points is given by
d

ds
(R − r(h))|R=r(h) = [Ṙ − ḣr ′(h)]|R=r(h) = 1 − 2hr(h) + r2(h) − 4(1 − h2)r ′(h) = 0.

(5.21)

We replace r ′ = −(δ′
1r + δ′

2)/(2δ0r + δ1) in (5.21) and use once again the quadratic equation
satisfied by r to obtain[
δ1 + 4δ2h +

δ1δ2

δ0
+ 4δ′

2(1 − h2)

]
+ r

[
2δ0 + 2δ1h − 2δ2 +

δ2
1

δ0
+ 4δ′

1(1 − h2)

]
= 0.

Next, replacing r from (5.20) and performing the needed calculations we get

[12δ0(2ωv − v2)(1 − h2) + D]
√

D − [3v2(1 + h)D + 2δ0(1 − h2)D′] = 0.

By (5.20) and (5.17) one has

D = (1 + h)2(9v4 + 24ω2δ0ζ ), D′ = (1 + h)(18v4 + 24ω2δ0(ζ − 1)), ζ = 1 − h

1 + h
> 0.

We replace these values in the equation above and divide the result by (1 + h)3. One obtains

[9v4 + 12(2ω2 + 2ωv − v2)δ0ζ ]
√

9v4 + 24ω2δ0ζ

− [27v6 + 12(3v4 + 6ω2v2 − 4ω2δ0)δoζ + 48ω2δ2
0ζ

2
] = 0.

At the end, we introduce a new variable z by√
9v4 + 24ω2δ0ζ = 3(v2 + z), z ∈ (0,∞)

to obtain the equation of contact points in a final form P(z) = 0, where

P(z) = 3z3 + 6(3v2 − 2ωv − 2ω2)z2

+ 4(v + ω)(9v3 − 18ωv2 + 4ω2v + 4ω3)z + 2v2δ0(3v2 − 8ω2).
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Taking P(z) = 3z3 + A2z
2 + A1z + A0, it is easy to verify that

A2 > 0, A1 > 0, A0 > 0 for 3v2 − 8ω2 > 0;
A2 > 0, A1 > 0, A0 < 0 for 3v2 − 8ω2 < 0, v + ω > 0;
A1 < 0, A0 < 0 for v + ω < 0

(recall that v − 2ω > 0 and δ0 = 4v2 − 4ωv − 2ω2 > 0). By Descartes chain rule, the
equation P(z) = 0 has no positive root if 3v2 − 8ω2 � 0 and has exactly one positive root if
3v2 − 8ω2 < 0 and 2v2 − 2ωv − ω2 > 0. All changes of the variables we used throughout
the proof were one-to-one, hence there is no contact point in the first case and there is just
one contact point in the second case. As a result, in the first case C does not intersect �u and
therefore �u ⊂ W+. In the second case, C intersects �u at a unique point corresponding to
some h̄0 ∈ (−1, 1) so that the part of �u related to (−1, h̄0) is in W+ and the remaining part is
in W−. Let ϕ0 be the value corresponding to h0 according to (3.11) and let Tmax be the period
of the orbit going through (ϕ0, 0) in the (ϕ, ϕ′) plane. Then the orbits from the period annulus
having a period T > Tmax will be stable and the remaining ones unstable. Proposition 8 is
completely proved. �

Let us recall again that in the left(right) Duffing oscillator case the period T belongs to

the interval I = (T0,∞) where T0 = 2π
√

v
2v−4ω

. Lemma 3 and proposition 8 imply the

following.

Corollary 2. Both conditions of assumption 1 are satisfied in the left (right) Duffing oscillator
case, provided that

(i) 3v2 − 8ω2 � 0;

(ii) 3v2 − 8ω2 < 0, 2v2 − 2ωv − ω2 > 0 and the period T is sufficiently large.

Proof of theorem I. Theorem I is a direct consequence of corollary 2 and theorem 2, taking
into account that ϕ does not oscillate around zero only in the left and right Duffing oscillator
cases. �

Example 5.3 (coherent single-power nonlinearities). Let a(u) = βuk+1, b(u) = γβuk, k ∈ N,
where |γ | < 1 and v/β > 0. Or more generally, one can take a(u) = 2ωu + βuk+1, b(u) =
2ω + γβuk , where r = (v − 2ω)/β > 0. For simplicity, assume that c1 = 0. Then (3.5) is
satisfied with X0 = r1/k and proposition 1 works. Next, equation (3.3) implies that ϕ depends
on r alone. Moreover, one has

ϕ = r1/kϕ̄, ϕ0 = r1/kϕ̄0, ϕ1 = r1/kϕ̄1, c2 = r
k+2
k c̄2, U(ϕ) = r

2
k Ū (ϕ̄),

where ϕ̄, ϕ̄0, ϕ̄1, c̄2 and Ū do not depend on v, ω and β. Therefore, we obtain

d̈(v) = 1

2

d

dv

∫ T

0
(ϕ2 + ϕ′2) dx =

(
1

2

d

dv
r2/k

)∫ T

0
(ϕ̄2 + ϕ̄′2) dx

= r2/k

k(v − 2ω)

∫ T

0
(ϕ̄2 + ϕ̄′2) dx = 1

k(v − 2ω)

∫ T

0
(ϕ2 + ϕ′2) dx. (5.22)

Therefore, d̈(v) takes the sign of β (and v − 2ω).
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6. The perturbed gBBM equation

Let us denote by C(X, Y ) (respectively, B(X, Y )) the set of all closed (respectively, bounded)
operators S : X → Y . When X = Y , we shall write simply C(X) and B(X). If S ∈ C(X, Y ),
denote by G(S) ⊂ X × Y its graph. Below we choose X = Y = L2[0, T ]). One can define a
metric δ̂ on C(L2[0, T ]) as follows: for R, S ∈ C(L2[0, T ]), set

δ̂(R, S) = ‖PR − PS‖B(L2×L2),

where PR and PS are the orthogonal projections on the graphs of G(R) and G(S), respectively.
The following results are well known (see Kato [39, chapter 4, theorems 2.14 and 2.17]):

Theorem A. Take X = Y = L2[0, T ] and assume that R, S ∈ C(X, Y ),A ∈ B(X, Y ). Then

δ̂(R + A, S + A) � 2(1 + ‖A‖2)δ̂(R, S).

Theorem B. Assume that S ∈ C(X, Y ) and B is a S-bounded operator satisfying ‖Bf ‖ �
a‖f ‖ + b‖Sf ‖ with b < 1. Then

R = S + B ∈ C(X, Y ) and δ̂(R, S) �
√

a2 + b2

1 − b
.

Let us introduce a small perturbation in (gBBM) by taking a(u) = 2ωu + βuk, k = 2, 3 and
b(u) = γg(u) in the general equation (1.1) where γ is a small real parameter. We will denote
the travelling-wave solution corresponding to (1.1) again by ϕv and the one corresponding
to (gBBM) (that is, when γ = 0) by ϕ0

v . If T is the period of ϕ0
v , then by proposition 3 for

sufficiently small γ there is a smooth function ϕ0(γ ) such that the wave solution ϕv of the
perturbed equation which goes through the point (ϕ0(γ ), 0) in the (ϕ, ϕ′) plane will have the
same period T. For the related operators Hv , we have respectively

Hv = −v∂2
x + v − a′(ϕv) + γ [g(ϕv)∂

2
x + g′(ϕv)ϕ

′
v∂x + 1

2g′′(ϕv)ϕ
′2
v + g′(ϕv)ϕ

′′
v ],

H0
v = −v∂2

x + v − a′(ϕ0
v

)
.

Theorem 3. If assumption 1(i) holds for the operator H0
v , then for γ sufficiently small it also

holds for the operator Hv .

Proof. In order to apply theorem A, we define the operator A to be a multiplication by the
function −a′(ϕ0

v

)
and take S = −v∂2

x + v. Then denoting Bγ = Hv − H0
v , we obtain from

theorem A the estimate

δ̂
(
Hv,H0

v

) = δ̂(S + Bγ + A, S + A) � 2(1 + ‖A‖2)δ̂(S + Bγ , S). (6.1)

As

Bγ = a′(ϕ0
v

)− a′(ϕv) + γ [−v−1g(ϕv)S + g′(ϕv)ϕ
′
v∂x + G]

where

G = g(ϕv) + 1
2g′′(ϕv)ϕ

′2
v + g′(ϕv)ϕ

′′
v ,

for f ∈ D(S) = H 2([0, T ]), we further have

‖Bγ f ‖ � max
[0,T ]

|a′(ϕ0
v

)− a′(ϕv)|.‖f ‖
+ |γ |[max

[0,T ]
|g(ϕv)/v|.‖Sf ‖ + max

[0,T ]
|g′(ϕv)ϕ

′
v|.‖∂xf ‖ + max

[0,T ]
|G|.‖f ‖].
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From Plancherel identity, we have

‖Sf ‖2 =
∫ T

0
Sf.Sf dx = T

+∞∑
k=−∞

|Ŝf (k)|2

= v2
+∞∑

k=−∞
(1 + |k|2)2|f (k)|2 � K(v)

+∞∑
k=−∞

|k|2|f (k)|2 = K(v)‖∂xf ‖2,

where K(v) is a constant depending only on v. By using propositions 3 and 4, we obtain
that max

[0,T ]
|a′(ϕ0

v

) − a′(ϕv)| = O(γ ). Taking into account these estimates, we come to the

conclusion that the operator B = Bγ is S-bounded, with constants a, b tending to zero as
γ → 0. Applying theorem B and inequality (6.1), we obtain

δ̂
(
Hv,H0

v

)
� 2(1 + ‖A‖2)

√
a2 + b2

1 − b
= O(γ ). (6.2)

Therefore, by [39] (theorem 3.16 in chapter 4), the operators Hv and H0
v have the same spectral

properties. More precisely (see also [1, p 363]), let U be the open disc bounded by � and
spec
(
H0

v

)∩U = {α0, 0}, where α0 is the negative eigenvalue of H0
v . Choose circular contours

�1 and �2 contained in U, such that if U1 and U2 are the open discs bounded by �1 and
�2, respectively, then spec

(
H0

v

) ∩ U 1 = {α0} and spec
(
H0

v

) ∩ U 2 = {0}. From (6.2) for
sufficiently small γ we have that the spec(Hv) ∩ U 1 and spec(Hv) ∩ U 2 consist of a single,
simple eigenvalue. Since 0 is an eigenvalue of Hv we must have spec(Hv) ∩ U 2 = {0}, which
shows that 0 is a simple eigenvalue of Hv . Similarly we obtain that spec(Hv) ∩ U consists of
a finite set of eigenvalues of total multiplicity 2. This completes the proof of the theorem. �

Proof of theorems II and III. Take ω = 0. Equality (5.22) implies that d̈(v) is positive.
When γ = 0, applying respectively proposition 7 and corollary 1, we conclude that H0

v has
the needed spectral properties in both cases. By theorem 3 the same remains true for small
|γ | as well. Hence, theorem 2 applies to both cases. �

7. Small-amplitude travelling-wave solutions

Since the expressions in (3.10) and (4.9) are too complex, it is difficult to use them in general.
Below we are going to consider the simpler case when the periodic waves we study are of small
amplitude. That is, ϕ1 − ϕ0 is close to zero and therefore the periodic trajectory is entirely
contained in a small neighbourhood of some centre (X0, 0) ∈ R

2 given by (3.5). Below we
establish that an important role in the stability of the small-amplitude travelling-wave solutions
is played by the first isochronous (or period) constant. Let us recall that the period function
has an expansion

T (r) = T0 + T2r
2 + T4r

4 + T6r
6 + T8r

8 + · · ·
with respect to r, the distance between the centre at (X0, 0) and the intersection point of the
orbit with the x-axis (ϕ0, 0). Then T2k, k = 1, 2, . . ., is the kth isochronous constant. When all
period constants are zero, the centre is isochronous and all orbits surrounding it have the same
period T0. Since T ′(ϕ0) = −dT/dr , the above expansion yields immediately the following
proposition.

Proposition 9. The period of a small-amplitude travelling-wave solution around a non-
isochronous centre is not critical.
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Let us mention, however, that the calculation of the isochronous constants is a difficult task
and the problem of isochronicity is completely solved for only few particular cases. Denote
for short

p = − a′′(X0)

3(a′(X0) − v)
, q = − a′′′(X0)

3(a′(X0) − v)
, m = b′(X0)

v − b(X0)
, n = b′′(X0)

v − b(X0)
.

(7.1)

As we shall see below, the first isochronous constant in our case is expressed by

T2 = T0ϑ, T0 = 2π

√
v − b(X0)

a′(X0) − v
, ϑ = 1

16
(15p2 + 3q − m2 − 6pm − 2n).

Take a small positive ε and let ϕ0 = X0 − ε. Then by (3.9) we obtain

ϕ1 = X0 + ε + pε2 + p2ε3 + O(ε4). (7.2)

Expression (7.2) as well as the formulae that follow are obtained by long and boring asymptotic
calculations which we will omit here. Thus, by using (3.8) we come to the expression

U(X) = ε2(a′(X0) − v)(1 − s2)[1 + p(1 − s)ε − 1
4 (p2(1 + 6s) + q(1 + s2))ε2 + · · ·]

(v − b(X0))
[
1 − msε − 1

2 (mp(1 + s) + ns2)ε2 + · · · ] .

Then, by (3.7) and (3.8) we obtain

T = T0[1 + ϑε2 + O(ε4)]. (7.3)

In order to calculate the sign of the derivative d̈(v), we prefer to apply a more direct approach,
deriving first an alternative formula instead of (4.9). By using (4.3), we obtain

d̈(v) = d

dv

(∫ T/2

0
(ϕ2 + ϕ′2) dx

)
= d

dv

(∫ ϕ1

ϕ0

[s2 + U(s)]
ds√
U(s)

)
.

In the calculation below, we denote by ϕ̇0, ϕ̇1, etc, the derivatives with respect to the parameter
v. As U(s) vanishes at ϕ0 and ϕ1, then clearly

d

dv

(∫ ϕ1

ϕ0

√
U(s) ds

)
=
∫ ϕ1

ϕ0

(U̇(s) + ϕ̇0Uϕ0(s)) ds

2
√

U(s)
.

To perform differentiation in the other part of the integral, we first use a change of the variable
like (3.8) and return to the initial variable after the calculations are made. Thus,

d

dv

(∫ ϕ1

ϕ0

s2 ds√
U(s)

)
= ϕ̇1 − ϕ̇0

ϕ1 − ϕ0

∫ ϕ1

ϕ0

s2 ds√
U(s)

+
∫ ϕ1

ϕ0

(ϕ̇1 − ϕ̇0)s + ϕ̇0ϕ1 − ϕ̇1ϕ0

ϕ1 − ϕ0

2s ds√
U(s)

−
∫ ϕ1

ϕ0

(
U̇ (s) + ϕ̇0Uϕ0(s) +

(ϕ̇1 − ϕ̇0)s + ϕ̇0ϕ1 − ϕ̇1ϕ0

ϕ1 − ϕ0
U ′(s)

)
s2 ds

2U 3/2(s)
.

As a result, one obtains

d̈(v) =
∫ ϕ1

ϕ0

V (s) ds

2U 3/2(s)
, (7.4)

with

V (s) = 2
ϕ̇1 − ϕ̇0

ϕ1 − ϕ0
s2U(s) + (U(s) − s2)(U̇(s) + ϕ̇0Uϕ0(s))

+ (4sU(s) − s2U ′(s))
(ϕ̇1 − ϕ̇0)s + ϕ̇0ϕ1 − ϕ̇1ϕ0

ϕ1 − ϕ0
. (7.5)
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From (3.5), (7.1) and (7.2), for the derivatives with respect to v, we get respectively

ϕ̇0 = X0

a′(X0) − v
− ε̇,

ϕ̇1 = X0 + (p + 3p2X0 + qX0)ε
2 + O(ε3)

a′(X0) − v
+ [1 + 2pε + 3p2ε2 + O(ε3)]ε̇.

(7.6)

Replacing (7.2) and (7.6) in the expression of V (X) given by (7.5), one obtains

V (X) = (1 − s2)X2
0

v − b(X0)

(
5 + (3p − m)X0 +

a′(X0) − v

v − b(X0)

)
ε2 + O(ε3)

+
(1 − s2)(a′(X0) − v)ε2ε̇

v − b(X0)

[(
pX2

0 + 4X0 − mX2
0

)
s

+

(
4s2 +

2(a′(X0) − v)

v − b(X0)
+ X0[p(4 + 8s − 2s2) + 2ms2] + X2

0[p2(3 + 2s)

+pm(2s2 − 2s − 1) +
q

2
(1 + s2) − (2m2 + n)s2]

)
ε + O(ε2)

]
.

The leading term of ε̇ can be determined from (7.3) after differentiation with respect to v. One
obtains

ε̇ ∼ − Ṫ0

2T2ε
= 1

4(a′(X0) − v)ϑε

(
X0m − 3pX0 − 1 − a′(X0) − v

v − b(X0)

)
.

Finally, replacing in integral (7.4), we derive the formula

d̈(v) = (a′(X0) − v)

[
T0X

2
0

(a′(X0) − v)2
− Ṫ 2

0

2T2

]
+ O(ε). (7.7)

Example 1 (the BBM equation). Let a(u) = 2ωu + 3
2u2, b(u) = 0. Assume for definiteness

that v > 0. The other case is considered similarly. Using the notation introduced earlier and
the expression of X0, we obtain

a′(X0) − v = D1/2, p = − 1

D1/2
, q = m = n = 0, ϑ = 15

16D
, T0 = 2π

v1/2

D1/4
,

T2 = 15T0

16D
, Ṫ0 = T0(2ω2 − ωv + 3c1)

vD
, d̈(v) = T0

D1/2

[
X2

0 − 8(2ω2 − ωv + 3c1)
2

15v2

]
.

Now, expressing c1 and X0 through D, we rewrite the expression in the brackets of d̈(v) as

� = X2
0 − 2(D − v2 + 2ωv)2

15v2

= − 2

15v2

[
D +

√
5

6
vD1/2 −

(
1 −
√

5

6

)
v(v − 2ω)

]

×
[
D −
√

5

6
vD1/2 −

(
1 +

√
5

6

)
v(v − 2ω)

]
.

Next, denote by λ1, λ2 the roots (with respect to D1/2) of the first multiplier, and respectively
by λ3, λ4 the roots of the second multiplier.

(a) If 0 < v � 48
361

(
9 + 5
√

5
6

)
ω, then both multipliers are positive and � < 0.
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(b) If 48
361

(
9 + 5
√

5
6

)
ω < v � 2ω, then the first multiplier is positive, 0 � λ4 < λ3 and

therefore � > 0 ⇔ λ4 < D1/2 < λ3.
(c) If v > 2ω, then 0 < λ1 < λ3, λ2 < 0, λ4 < 0. Therefore � > 0 ⇔ λ1 < D1/2 < λ3.

Taking a second power of the above inequalities, it follows that

d̈(v) > 0 ⇔ λ2
4 − (v − 2ω)2 < 6c1 < λ2

3 − (v − 2ω)2 in case (b),
λ2

1 − (v − 2ω)2 < 6c1 < λ2
3 − (v − 2ω)2 in case (c).

(7.8)

As λk are homogeneous of first degree with respect to v, ω, one can reformulate (7.8) as
d̈(v) > 0 if and only if (ω/v, c1/v

2) ∈ � ⊂ R
2 where � can be explicitly written down if

needed by using the formulae of the quadratic roots λk . We are not going to do this.

Example 2 (the modified BBM equation). Let a(u) = 2ωu + βu3, b(u) = 0, c1 = 0.

(i) X0 = 0 (global centre or truncated pendulum case). Then d̈(v) = 4ω2

3βv2 T0 + O(ε) and

ϑ = 3β

8(v−2ω)
�= 0.

(ii) X2
0 = v−2ω

β
(Duffing oscillator). Then d̈(v) = 3v2−8ω2

6βv2 T0 + O(ε) and ϑ = 3β

4(v−2ω)
> 0.

As seen from these examples, d̈(v) could be negative or positive, depending on the case.

Proof of theorems IV and V. In examples 1 and 2, we calculated the first term of d̈(v)

provided that b(u) = 0 and understood when it is positive. If one take b(u) = γg(u) with
|γ | small, then d̈(v) will differ from the case b(u) = 0 by a term which is O(γ ). Therefore,
d̈(v) will keep the sign of its first term provided that |γ | and the amplitude ε are small enough.
This means that d̈(v) > 0 in the domain � from the first example and for 3v2 − 8ω2 > 0
in the Duffing oscillator case of the second example (recall that all solutions not oscillating
around zero belong to this case). Since the operator H0

v related to the above cases satisfies the
spectral properties required in assumption 1, the statements of theorems IV and V follow from
theorems 2 and 3. �
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